
Package: ngboostForecast (via r-universe)
August 24, 2024

Title Probabilistic Time Series Forecasting

Version 0.1.1

Description Probabilistic time series forecasting via Natural Gradient
Boosting for Probabilistic Prediction.

License Apache License (>= 2)

URL https://github.com/Akai01/ngboostForecast

BugReports https://github.com/Akai01/ngboostForecast/issues

Encoding UTF-8

LazyData true

SystemRequirements Python (>= 3.6)

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.0

Imports dplyr (>= 1.0.7), forecast (>= 8.15), magrittr (>= 2.0.1), R6
(>= 2.5.1)

Suggests ggplot2 (>= 3.3.5), testthat (>= 3.0.0)

Config/testthat/edition 3

Config/reticulate list(packages = list(list(package =
'importlib-metadata', pip = TRUE), list(package = 'ngboost',
pip = TRUE)))

Depends R (>= 3.6), reticulate (>= 1.20)

Repository https://akai01.r-universe.dev

RemoteUrl https://github.com/akai01/ngboostforecast

RemoteRef HEAD

RemoteSha 08c92edd3ce5b7153b8ca7de253cba30d6056d98

1

https://github.com/Akai01/ngboostForecast
https://github.com/Akai01/ngboostForecast/issues

2 Dist

Contents
Dist . 2
is_exists_conda . 3
NGBforecast . 3
NGBforecastCV . 7
ngboostForecast . 10
Scores . 10
seatbelts . 11
sklearner . 12

Index 13

Dist NGBoost distributions

Description

NGBoost distributions

Usage

Dist(
dist = c("Normal", "Bernoulli", "k_categorical", "StudentT", "Laplace", "Cauchy",

"Exponential", "LogNormal", "MultivariateNormal", "Poisson"),
k

)

Arguments

dist NGBoost distributions. One of the following:

• Bernoulli
• k_categorical
• StudentT
• Poisson
• Laplace
• Cauchy
• Exponential
• LogNormal
• MultivariateNormal
• Normal

k Used only with k_categorical and MultivariateNormal

Value

An NGBoost Distribution object

is_exists_conda 3

is_exists_conda Is conda installed?

Description

Only for internal usage.

Usage

is_exists_conda()

Value

Logical, TRUE if conda is installed.

Author(s)

Resul Akay

NGBforecast NGBoost forecasting class

Description

The main forecasting class.

Value

An NGBforecast class

Methods

Public methods:

• NGBforecast$new()

• NGBforecast$fit()

• NGBforecast$forecast()

• NGBforecast$feature_importances()

• NGBforecast$plot_feature_importance()

• NGBforecast$get_params()

• NGBforecast$clone()

Method new(): Initialize an NGBforecast model.

Usage:

4 NGBforecast

NGBforecast$new(
Dist = NULL,
Score = NULL,
Base = NULL,
natural_gradient = TRUE,
n_estimators = as.integer(500),
learning_rate = 0.01,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = as.integer(100),
tol = 1e-04,
random_state = NULL

)

Arguments:

Dist Assumed distributional form of Y|X=x. An output of Dist function, e.g. Dist('Normal')
Score Rule to compare probabilistic predictions to the observed data. A score from Scores

function, e.g. Scores(score = "LogScore").
Base Base learner. An output of sklearner function, e.g. sklearner(module = "tree",

class = "DecisionTreeRegressor", ...)

natural_gradient Logical flag indicating whether the natural gradient should be used
n_estimators The number of boosting iterations to fit
learning_rate The learning rate
minibatch_frac The percent subsample of rows to use in each boosting iteration
col_sample The percent subsample of columns to use in each boosting iteration
verbose Flag indicating whether output should be printed during fitting. If TRUE it will print

logs.
verbose_eval Increment (in boosting iterations) at which output should be printed
tol Numerical tolerance to be used in optimization
random_state Seed for reproducibility.

Returns: An NGBforecast object that can be fit.

Method fit(): Fit the initialized model.

Usage:
NGBforecast$fit(
y,
max_lag = 5,
xreg = NULL,
test_size = NULL,
seasonal = TRUE,
K = frequency(y)/2 - 1,
train_loss_monitor = NULL,
val_loss_monitor = NULL,
early_stopping_rounds = NULL

)

NGBforecast 5

Arguments:

y A time series (ts) object
max_lag Maximum number of lags
xreg Optional. A numerical matrix of external regressors, which must have the same number

of rows as y.
test_size The length of validation set. If it is NULL, then, it is automatically specified.
seasonal Boolean. If seasonal = TRUE the fourier terms will be used for modeling seasonality.
K Maximum order(s) of Fourier terms, used only if seasonal = TRUE.
train_loss_monitor A custom score or set of scores to track on the training set during train-

ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

val_loss_monitor A custom score or set of scores to track on the validation set during train-
ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

early_stopping_rounds The number of consecutive boosting iterations during which the loss
has to increase before the algorithm stops early.

Returns: NULL

Method forecast(): Forecast the fitted model

Usage:
NGBforecast$forecast(h = 6, xreg = NULL, level = c(80, 95), data_frame = FALSE)

Arguments:

h Forecast horizon
xreg A numerical vector or matrix of external regressors
level Confidence level for prediction intervals
data_frame Bool. If TRUE, forecast will be returned as a data.frame object, if FALSE it will

return a forecast class. If TRUE, autoplot will function.

Method feature_importances(): Return the feature importance for all parameters in the dis-
tribution (the higher, the more important the feature).

Usage:
NGBforecast$feature_importances()

Returns: A data frame

Method plot_feature_importance(): Plot feature importance

Usage:
NGBforecast$plot_feature_importance()

Returns: A ggplot object

Method get_params(): Get parameters for this estimator.

Usage:
NGBforecast$get_params(deep = TRUE)

Arguments:

6 NGBforecast

deep bool, default = TRUE If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns: A named list of parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:

NGBforecast$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Resul Akay

References

Duan, T et. al. (2019), NGBoost: Natural Gradient Boosting for Probabilistic Prediction.

Examples

Not run:

library(ngboostForecast)

model <- NGBforecast$new(Dist = Dist("Normal"),
Base = sklearner(module = "linear_model",
class = "Ridge"),
Score = Scores("LogScore"),
natural_gradient = TRUE,
n_estimators = 200,
learning_rate = 0.1,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = 100,
tol = 1e-5)

model$fit(y = AirPassengers, seasonal = TRUE, max_lag = 12, xreg = NULL,
early_stopping_rounds = 10L)
fc <- model$forecast(h = 12, level = c(90, 80), xreg = NULL)

autoplot(fc)

End(Not run)

NGBforecastCV 7

NGBforecastCV NGBoost forecasting model selection class

Description

It is a wrapper for the sklearn GridSearchCV with TimeSeriesSplit.

Methods

Public methods:
• NGBforecastCV$new()

• NGBforecastCV$tune()

• NGBforecastCV$clone()

Method new(): Initialize an NGBforecastCV model.

Usage:
NGBforecastCV$new(
Dist = NULL,
Score = NULL,
Base = NULL,
natural_gradient = TRUE,
n_estimators = as.integer(500),
learning_rate = 0.01,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = as.integer(100),
tol = 1e-04,
random_state = NULL

)

Arguments:
Dist Assumed distributional form of Y|X=x. An output of Dist function, e.g. Dist('Normal')
Score Rule to compare probabilistic predictions to the observed data. A score from Scores

function, e.g. Scores(score = "LogScore").
Base Base learner. An output of sklearner function, e.g. sklearner(module = "tree",

class = "DecisionTreeRegressor", ...)

natural_gradient Logical flag indicating whether the natural gradient should be used
n_estimators The number of boosting iterations to fit
learning_rate The learning rate
minibatch_frac The percent subsample of rows to use in each boosting iteration
col_sample The percent subsample of columns to use in each boosting iteration
verbose Flag indicating whether output should be printed during fitting. If TRUE it will print

logs.
verbose_eval Increment (in boosting iterations) at which output should be printed

8 NGBforecastCV

tol Numerical tolerance to be used in optimization
random_state Seed for reproducibility.

Returns: An NGBforecastCV object that can be fit.

Method tune(): Tune ngboosForecast.

Usage:
NGBforecastCV$tune(
y,
max_lag = 5,
xreg = NULL,
seasonal = TRUE,
K = frequency(y)/2 - 1,
n_splits = NULL,
train_loss_monitor = NULL,
val_loss_monitor = NULL,
early_stopping_rounds = NULL

)

Arguments:
y A time series (ts) object
max_lag Maximum number of lags
xreg Optional. A numerical matrix of external regressors, which must have the same number

of rows as y.
seasonal Boolean. If seasonal = TRUE the fourier terms will be used for modeling seasonality.
K Maximum order(s) of Fourier terms, used only if seasonal = TRUE.
n_splits Number of splits. Must be at least 2.
train_loss_monitor A custom score or set of scores to track on the training set during train-

ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

val_loss_monitor A custom score or set of scores to track on the validation set during train-
ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

early_stopping_rounds The number of consecutive boosting iterations during which the loss
has to increase before the algorithm stops early.

test_size The length of validation set. If it is NULL, then, it is automatically specified.

Returns: A named list of best parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NGBforecastCV$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Resul Akay

NGBforecastCV 9

References

https://stanfordmlgroup.github.io/ngboost/2-tuning.html

Examples

Not run:

library(ngboostForecast)

dists <- list(Dist("Normal"))

base_learners <- list(sklearner(module = "tree", class = "DecisionTreeRegressor",
max_depth = 1),

sklearner(module = "tree", class = "DecisionTreeRegressor",
max_depth = 2),

sklearner(module = "tree", class = "DecisionTreeRegressor",
max_depth = 3),

sklearner(module = "tree", class = "DecisionTreeRegressor",
max_depth = 4),

sklearner(module = "tree", class = "DecisionTreeRegressor",
max_depth = 5),

sklearner(module = "tree", class = "DecisionTreeRegressor",
max_depth = 6),

sklearner(module = "tree", class = "DecisionTreeRegressor",
max_depth = 7))

scores <- list(Scores("LogScore"))

model <- NGBforecastCV$new(Dist = dists,
Base = base_learners,
Score = scores,
natural_gradient = TRUE,
n_estimators = list(10, 100),
learning_rate = list(0.1, 0.2),
minibatch_frac = list(0.1, 1),
col_sample = list(0.3),
verbose = FALSE,
verbose_eval = 100,
tol = 1e-5)

params <- model$tune(y = AirPassengers,
seasonal = TRUE,
max_lag = 12,
xreg = NULL,
early_stopping_rounds = NULL,
n_splits = 4L)

params

End(Not run)

https://stanfordmlgroup.github.io/ngboost/2-tuning.html

10 Scores

ngboostForecast Probabilistic Time Series Forecasting

Description

Probabilistic time series forecasting via Natural Gradient Boosting for Probabilistic Prediction.

References

Duan, T et. al. (2019), NGBoost: Natural Gradient Boosting for Probabilistic Prediction.

Examples

Not run:

library(ngboostForecast)

model <- NGBforecast$new(Dist = Dist("Normal"),
Base = sklearner(module = "linear_model",
class = "Ridge"),
Score = Scores("LogScore"),
natural_gradient = TRUE,
n_estimators = 200,
learning_rate = 0.1,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = 100,
tol = 1e-5)

model$fit(y = AirPassengers, seasonal = TRUE, max_lag = 12, xreg = NULL,

early_stopping_rounds = 10L)

fc <- model$forecast(h = 12, level = c(90, 80), xreg = NULL)

autoplot(fc)

End(Not run)

Scores Select a rule to compare probabilistic predictions to the observed data.

Description

Select a rule to compare probabilistic predictions to the observed data. A score from ngboost.scores,
e.g. LogScore.

seatbelts 11

Usage

Scores(score = c("LogScore", "CRPS", "CRPScore", "MLE"))

Arguments

score A string. can be one of the following:
• LogScore : Generic class for the log scoring rule.
• CRPS : Generic class for the continuous ranked probability scoring rule.
• CRPScore : Generic class for the continuous ranked probability scoring

rule.
• MLE : Generic class for the log scoring rule.

Value

A score class from ngboost.scores

Author(s)

Resul Akay

seatbelts Road Casualties in Great Britain 1969-84

Description

The Seatbelts dataset from the datasets package.

Usage

seatbelts

Format

An object of class mts (inherits from ts) with 192 rows and 8 columns.

Source

Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press, pp. 519–523.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford
University Press.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/UKDriverDeaths.html

References

Harvey, A. C. and Durbin, J. (1986). The effects of seat belt legislation on British road casualties:
A case study in structural time series modelling. Journal of the Royal Statistical Society series A,
149, 187–227.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/UKDriverDeaths.html

12 sklearner

sklearner Scikit-Learn interface

Description

Scikit-Learn interface

Usage

sklearner(module = "tree", class = "DecisionTreeRegressor", ...)

Arguments

module scikit-learn module name, default is ’tree’.

class scikit-learn’s module class, default is ’DecisionTreeRegressor’

... Other arguments passed to model class

Author(s)

Resul Akay

Examples

Not run:

sklearner(module = "tree", class = "DecisionTreeRegressor",
criterion="friedman_mse", min_samples_split=2)

End(Not run)

Index

∗ datasets
seatbelts, 11

autoplot, 5

Dist, 2, 4, 7

is_exists_conda, 3

NGBforecast, 3
NGBforecastCV, 7
ngboostForecast, 10

Scores, 4, 7, 10
seatbelts, 11
sklearner, 4, 7, 12

13

	Dist
	is_exists_conda
	NGBforecast
	NGBforecastCV
	ngboostForecast
	Scores
	seatbelts
	sklearner
	Index

