Package: caretForecast 0.1.1
Resul Akay
caretForecast: Conformal Time Series Forecasting Using State of Art Machine Learning Algorithms
Conformal time series forecasting using the caret infrastructure. It provides access to state-of-the-art machine learning models for forecasting applications. The hyperparameter of each model is selected based on time series cross-validation, and forecasting is done recursively.
Authors:
caretForecast_0.1.1.tar.gz
caretForecast_0.1.1.zip(r-4.5)caretForecast_0.1.1.zip(r-4.4)caretForecast_0.1.1.zip(r-4.3)
caretForecast_0.1.1.tgz(r-4.4-any)caretForecast_0.1.1.tgz(r-4.3-any)
caretForecast_0.1.1.tar.gz(r-4.5-noble)caretForecast_0.1.1.tar.gz(r-4.4-noble)
caretForecast_0.1.1.tgz(r-4.4-emscripten)caretForecast_0.1.1.tgz(r-4.3-emscripten)
caretForecast.pdf |caretForecast.html✨
caretForecast/json (API)
NEWS
# Install 'caretForecast' in R: |
install.packages('caretForecast', repos = c('https://akai01.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/akai01/caretforecast/issues
- retail - Grouped sales data from an Australian Retailer
- retail_wide - Sales data from an Australian Retailer in time series format
caretconformal-predictiondata-scienceeconometricsforecastforecastingforecasting-modelsmachine-learningmacroeconometricsmicroeconometricstime-seriestime-series-forcastingtime-series-prediction
Last updated 2 years agofrom:d3b1159463. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | OK | Nov 11 2024 |
R-4.5-linux | OK | Nov 11 2024 |
R-4.4-win | OK | Nov 11 2024 |
R-4.4-mac | OK | Nov 11 2024 |
R-4.3-win | OK | Nov 11 2024 |
R-4.3-mac | OK | Nov 11 2024 |
Exports:%<>%%>%accuracyARmlautolayerautoplotconformalRegressorforecastget_var_impsplit_tssuggested_methods
Dependencies:caretclasscliclockcodetoolscolorspacecpp11curldata.tablediagramdigestdplyre1071fansifarverforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrquadprogquantmodR6RColorBrewerRcppRcppArmadillorecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetseriesTTRtzdburcautf8vctrsviridisLitewithrxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Autoregressive forecasting using various Machine Learning models. | ARml |
Fit a conformal regressor. | conformalRegressor |
Forecasting using ARml model | forecast.ARml |
Variable importance for forecasting model. | get_var_imp |
Predict a conformalRegressor | predict.conformalRegressor |
Grouped sales data from an Australian Retailer | retail |
Sales data from an Australian Retailer in time series format | retail_wide |
Split a time series into training and testing sets | split_ts |
Suggested methods for ARml | suggested_methods |